|
@@ -283,33 +283,50 @@ public class QualityTaskController extends BaseController {
|
|
|
double averagingIntegrityError = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getIntegrityError));
|
|
|
qualityTaskDto.setIntegrityCorrect(averagingIntegrityCorrect);
|
|
|
qualityTaskDto.setIntegrityError(averagingIntegrityError);
|
|
|
- qualityTaskDto.setIntegrityCorrectProbability(df.format((float) averagingIntegrityCorrect / (averagingIntegrityCorrect + averagingIntegrityError)));
|
|
|
- qualityTaskDto.setIntegrityErrorProbability(df.format((float) averagingIntegrityError / (averagingIntegrityCorrect + averagingIntegrityError)));
|
|
|
-
|
|
|
+ if((averagingIntegrityCorrect + averagingIntegrityError) == 0){
|
|
|
+ qualityTaskDto.setIntegrityCorrectProbability("0%");
|
|
|
+ qualityTaskDto.setIntegrityErrorProbability("0%");
|
|
|
+ }else {
|
|
|
+ qualityTaskDto.setIntegrityCorrectProbability(df.format((float) averagingIntegrityCorrect / (averagingIntegrityCorrect + averagingIntegrityError)));
|
|
|
+ qualityTaskDto.setIntegrityErrorProbability(df.format((float) averagingIntegrityError / (averagingIntegrityCorrect + averagingIntegrityError)));
|
|
|
+ }
|
|
|
// 一致性
|
|
|
+
|
|
|
double averagingUniformityCorrect = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getUniformityCorrect));
|
|
|
double averagingUniformityError = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getUniformityError));
|
|
|
qualityTaskDto.setUniformityCorrect(averagingUniformityCorrect);
|
|
|
qualityTaskDto.setUniformityError(averagingUniformityError);
|
|
|
- qualityTaskDto.setUniformityCorrectProbability(df.format((float) averagingUniformityCorrect / (averagingUniformityCorrect + averagingUniformityError)));
|
|
|
- qualityTaskDto.setUniformityErrorProbability(df.format((float) averagingUniformityError / (averagingUniformityCorrect + averagingUniformityError)));
|
|
|
-
|
|
|
+ if((averagingUniformityCorrect + averagingUniformityError) == 0){
|
|
|
+ qualityTaskDto.setUniformityCorrectProbability("0%");
|
|
|
+ qualityTaskDto.setUniformityErrorProbability("0%");
|
|
|
+ }else {
|
|
|
+ qualityTaskDto.setUniformityCorrectProbability(df.format((float) averagingUniformityCorrect / (averagingUniformityCorrect + averagingUniformityError)));
|
|
|
+ qualityTaskDto.setUniformityErrorProbability(df.format((float) averagingUniformityError / (averagingUniformityCorrect + averagingUniformityError)));
|
|
|
+ }
|
|
|
// 规范性
|
|
|
double averagingNormativeCorrect = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getNormativeCorrect));
|
|
|
double averagingNormativeError = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getNormativeError));
|
|
|
qualityTaskDto.setNormativeCorrect(averagingNormativeCorrect);
|
|
|
qualityTaskDto.setNormativeError(averagingNormativeError);
|
|
|
- qualityTaskDto.setNormativeCorrectProbability(df.format((float) averagingNormativeCorrect / (averagingNormativeCorrect + averagingNormativeError)));
|
|
|
- qualityTaskDto.setNormativeErrorProbability(df.format((float) averagingNormativeError / (averagingNormativeCorrect + averagingNormativeError)));
|
|
|
-
|
|
|
+ if((averagingNormativeCorrect + averagingNormativeError) == 0){
|
|
|
+ qualityTaskDto.setNormativeCorrectProbability("0%");
|
|
|
+ qualityTaskDto.setNormativeErrorProbability("0%");
|
|
|
+ }else {
|
|
|
+ qualityTaskDto.setNormativeCorrectProbability(df.format((float) averagingNormativeCorrect / (averagingNormativeCorrect + averagingNormativeError)));
|
|
|
+ qualityTaskDto.setNormativeErrorProbability(df.format((float) averagingNormativeError / (averagingNormativeCorrect + averagingNormativeError)));
|
|
|
+ }
|
|
|
// 准确定
|
|
|
double averagingAccuracyCorrect = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getAccuracyCorrect));
|
|
|
double averagingAccuracyError = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getAccuracyError));
|
|
|
qualityTaskDto.setAccuracyCorrect(averagingAccuracyCorrect);
|
|
|
qualityTaskDto.setAccuracyError(averagingAccuracyError);
|
|
|
- qualityTaskDto.setAccuracyCorrectProbability(df.format((float) averagingAccuracyCorrect / (averagingAccuracyCorrect + averagingAccuracyError)));
|
|
|
- qualityTaskDto.setAccuracyErrorProbability(df.format((float) averagingAccuracyError / (averagingAccuracyCorrect + averagingAccuracyError)));
|
|
|
-
|
|
|
+ if((averagingAccuracyCorrect + averagingAccuracyError) == 0){
|
|
|
+ qualityTaskDto.setAccuracyCorrectProbability("0%");
|
|
|
+ qualityTaskDto.setAccuracyErrorProbability("0%");
|
|
|
+ }else {
|
|
|
+ qualityTaskDto.setAccuracyCorrectProbability(df.format((float) averagingAccuracyCorrect / (averagingAccuracyCorrect + averagingAccuracyError)));
|
|
|
+ qualityTaskDto.setAccuracyErrorProbability(df.format((float) averagingAccuracyError / (averagingAccuracyCorrect + averagingAccuracyError)));
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
return ResponseEntity.ok(new ResultMap(tokenUtils).successAndRefreshToken(request).payloads(qualityTasks));
|