|
@@ -35,6 +35,7 @@ import java.text.DecimalFormat;
|
|
import java.util.ArrayList;
|
|
import java.util.ArrayList;
|
|
import java.util.Date;
|
|
import java.util.Date;
|
|
import java.util.List;
|
|
import java.util.List;
|
|
|
|
+import java.util.stream.Collectors;
|
|
|
|
|
|
@Api(value = "/qualityTask", tags = "qualityTask", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
|
|
@Api(value = "/qualityTask", tags = "qualityTask", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
|
|
@ApiResponses(@ApiResponse(code = 404, message = "qualityTask not found"))
|
|
@ApiResponses(@ApiResponse(code = 404, message = "qualityTask not found"))
|
|
@@ -239,40 +240,45 @@ public class QualityTaskController extends BaseController {
|
|
// 查询
|
|
// 查询
|
|
List<QualityTaskDto> qualityTasks = qualityTaskService.getQualityTaskListCondition(systemId, time);
|
|
List<QualityTaskDto> qualityTasks = qualityTaskService.getQualityTaskListCondition(systemId, time);
|
|
|
|
|
|
|
|
+
|
|
for (QualityTaskDto qualityTaskDto : qualityTasks) {
|
|
for (QualityTaskDto qualityTaskDto : qualityTasks) {
|
|
|
|
|
|
|
|
+ List<QualityAuditor> qualityAuditorList = qualityAuditorService.getQualityAuditorListByTaskId(qualityTaskDto.getId(), null, null);
|
|
|
|
+
|
|
DecimalFormat df = new DecimalFormat("0.00");//格式化小数
|
|
DecimalFormat df = new DecimalFormat("0.00");//格式化小数
|
|
|
|
|
|
- if (null != qualityTaskDto.getIntegrityCorrect() && null != qualityTaskDto.getIntegrityError()) {
|
|
|
|
- // 完整性
|
|
|
|
- String integrityCorrectProbability = df.format((float) qualityTaskDto.getIntegrityCorrect() / (qualityTaskDto.getIntegrityCorrect() + qualityTaskDto.getIntegrityError()));//返回的是String类型
|
|
|
|
- qualityTaskDto.setIntegrityCorrectProbability(integrityCorrectProbability);
|
|
|
|
- String integrityErrorProbability = df.format((float) qualityTaskDto.getIntegrityError() / (qualityTaskDto.getIntegrityCorrect() + qualityTaskDto.getIntegrityError()));//返回的是String类型
|
|
|
|
- qualityTaskDto.setIntegrityErrorProbability(integrityErrorProbability);
|
|
|
|
- }
|
|
|
|
|
|
+ // 完整性
|
|
|
|
+ double averagingIntegrityCorrect = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getIntegrityCorrect));
|
|
|
|
+ double averagingIntegrityError = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getIntegrityError));
|
|
|
|
+ qualityTaskDto.setIntegrityCorrect(averagingIntegrityCorrect);
|
|
|
|
+ qualityTaskDto.setIntegrityError(averagingIntegrityError);
|
|
|
|
+ qualityTaskDto.setIntegrityCorrectProbability(df.format((float) averagingIntegrityCorrect / (averagingIntegrityCorrect + averagingIntegrityError)));
|
|
|
|
+ qualityTaskDto.setIntegrityErrorProbability(df.format((float) averagingIntegrityError / (averagingIntegrityCorrect + averagingIntegrityError)));
|
|
|
|
+
|
|
|
|
+ // 一致性
|
|
|
|
+ double averagingUniformityCorrect = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getUniformityCorrect));
|
|
|
|
+ double averagingUniformityError = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getUniformityError));
|
|
|
|
+ qualityTaskDto.setUniformityCorrect(averagingUniformityCorrect);
|
|
|
|
+ qualityTaskDto.setUniformityError(averagingUniformityError);
|
|
|
|
+ qualityTaskDto.setUniformityCorrectProbability(df.format((float) averagingUniformityCorrect / (averagingUniformityCorrect + averagingUniformityError)));
|
|
|
|
+ qualityTaskDto.setUniformityErrorProbability(df.format((float) averagingUniformityError / (averagingUniformityCorrect + averagingUniformityError)));
|
|
|
|
+
|
|
|
|
+ // 规范性
|
|
|
|
+ double averagingNormativeCorrect = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getNormativeCorrect));
|
|
|
|
+ double averagingNormativeError = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getNormativeError));
|
|
|
|
+ qualityTaskDto.setNormativeCorrect(averagingNormativeCorrect);
|
|
|
|
+ qualityTaskDto.setNormativeError(averagingNormativeError);
|
|
|
|
+ qualityTaskDto.setNormativeCorrectProbability(df.format((float) averagingNormativeCorrect / (averagingNormativeCorrect + averagingNormativeError)));
|
|
|
|
+ qualityTaskDto.setNormativeErrorProbability(df.format((float) averagingNormativeError / (averagingNormativeCorrect + averagingNormativeError)));
|
|
|
|
+
|
|
|
|
+ // 准确定
|
|
|
|
+ double averagingAccuracyCorrect = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getAccuracyCorrect));
|
|
|
|
+ double averagingAccuracyError = qualityAuditorList.stream().collect(Collectors.averagingInt(QualityAuditor::getAccuracyError));
|
|
|
|
+ qualityTaskDto.setAccuracyCorrect(averagingAccuracyCorrect);
|
|
|
|
+ qualityTaskDto.setAccuracyError(averagingAccuracyError);
|
|
|
|
+ qualityTaskDto.setAccuracyCorrectProbability(df.format((float) averagingAccuracyCorrect / (averagingAccuracyCorrect + averagingAccuracyError)));
|
|
|
|
+ qualityTaskDto.setAccuracyErrorProbability(df.format((float) averagingAccuracyError / (averagingAccuracyCorrect + averagingAccuracyError)));
|
|
|
|
|
|
- if (null != qualityTaskDto.getUniformityCorrect() && null != qualityTaskDto.getUniformityError()) {
|
|
|
|
- // 一致性
|
|
|
|
- String uniformityCorrectProbability = df.format((float) qualityTaskDto.getUniformityCorrect() / (qualityTaskDto.getUniformityCorrect() + qualityTaskDto.getUniformityError()));//返回的是String类型
|
|
|
|
- qualityTaskDto.setUniformityCorrectProbability(uniformityCorrectProbability);
|
|
|
|
- String uniformityErrorProbability = df.format((float) qualityTaskDto.getUniformityError() / (qualityTaskDto.getUniformityCorrect() + qualityTaskDto.getUniformityError()));//返回的是String类型
|
|
|
|
- qualityTaskDto.setUniformityErrorProbability(uniformityErrorProbability);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (null != qualityTaskDto.getNormativeCorrect() && null != qualityTaskDto.getNormativeError()) {
|
|
|
|
- // 规范性
|
|
|
|
- String normativeCorrectProbability = df.format((float) qualityTaskDto.getNormativeCorrect() / (qualityTaskDto.getNormativeCorrect() + qualityTaskDto.getNormativeError()));//返回的是String类型
|
|
|
|
- qualityTaskDto.setNormativeCorrectProbability(normativeCorrectProbability);
|
|
|
|
- String normativeErrorProbability = df.format((float) qualityTaskDto.getNormativeError() / (qualityTaskDto.getNormativeCorrect() + qualityTaskDto.getNormativeError()));//返回的是String类型
|
|
|
|
- qualityTaskDto.setNormativeErrorProbability(normativeErrorProbability);
|
|
|
|
- }
|
|
|
|
- if (null != qualityTaskDto.getAccuracyCorrect() && null != qualityTaskDto.getAccuracyError()) {
|
|
|
|
- // 准确定
|
|
|
|
- String accuracyCorrectProbability = df.format((float) qualityTaskDto.getAccuracyCorrect() / (qualityTaskDto.getAccuracyCorrect() + qualityTaskDto.getAccuracyError()));//返回的是String类型
|
|
|
|
- qualityTaskDto.setAccuracyCorrectProbability(accuracyCorrectProbability);
|
|
|
|
- String accuracyErrorProbability = df.format((float) qualityTaskDto.getAccuracyError() / (qualityTaskDto.getAccuracyCorrect() + qualityTaskDto.getAccuracyError()));//返回的是String类型
|
|
|
|
- qualityTaskDto.setAccuracyErrorProbability(accuracyErrorProbability);
|
|
|
|
- }
|
|
|
|
}
|
|
}
|
|
|
|
|
|
return ResponseEntity.ok(new ResultMap(tokenUtils).successAndRefreshToken(request).payloads(qualityTasks));
|
|
return ResponseEntity.ok(new ResultMap(tokenUtils).successAndRefreshToken(request).payloads(qualityTasks));
|